A χ-binding function for the class of {3K1, K1 ∪K4}-free graphs

نویسنده

  • Anders Sune Pedersen
چکیده

We prove that the chromatic number of any {3K1,K1∪K4}-free graph is at most a factor 28/15 times its clique number. In order to prove this result we prove that any connected subcubic triangle-free graph G on n vertices has a matching of size at least (n− 1)/3, and we characterise the extremal graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chromatic bounds for some classes of 2K2-free graphs

A hereditary class G of graphs is χ-bounded if there is a χ-binding function, say f such that χ(G) ≤ f(ω(G)), for every G ∈ G, where χ(G) (ω(G)) denote the chromatic (clique) number of G. It is known that for every 2K2-free graph G, χ(G) ≤ ( ω(G)+1 2 ) , and the class of (2K2, 3K1)-free graphs does not admit a linear χ-binding function. In this paper, we are interested in classes of 2K2-free gr...

متن کامل

Edge and Total Choosability of Near-Outerplanar Graphs

It is proved that, if G is a K4-minor-free graph with maximum degree ∆ > 4, then G is totally (∆ + 1)-choosable; that is, if every element (vertex or edge) of G is assigned a list of ∆ + 1 colours, then every element can be coloured with a colour from its own list in such a way that every two adjacent or incident elements are coloured with different colours. Together with other known results, t...

متن کامل

Coloring (P6, diamond, K4)-free graphs

We show that every (P6, diamond, K4)-free graph is 6-colorable. Moreover, we give an example of a (P6, diamond, K4)-free graph G with χ(G) = 6. This generalizes some known results in the literature.

متن کامل

-λ coloring of graphs and Conjecture Δ ^ 2

For a given graph G, the square of G, denoted by G2, is a graph with the vertex set V(G) such that two vertices are adjacent if and only if the distance of these vertices in G is at most two. A graph G is called squared if there exists some graph H such that G= H2. A function f:V(G) {0,1,2…, k} is called a coloring of G if for every pair of vertices x,yV(G) with d(x,y)=1 we have |f(x)-f(y)|2 an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011